

Chemistry 12Resource Exam A

Exam Booklet

PART A: MULTIPLE CHOICE Value: 62.5% of the examination

Suggested Time: 80 minutes

INSTRUCTIONS: For each question, select the **best** answer.

- 1. Solid sodium metal reacts rapidly with water in an open beaker to produce aqueous sodium hydroxide and hydrogen gas. A change in which of the following could be used to measure the rate of this reaction?
 - A. the volume of the solution
 - B. the pressure of the hydrogen gas
 - C. the concentration of the solid sodium
 - D. the mass of the beaker and its contents
- 2. Which of the following factors will increase the reaction rate of a heterogeneous reaction, but not of a homogeneous reaction?
 - A. adding a catalyst
 - B. increasing temperature
 - C. increasing concentration
 - D. increasing surface area

3. Which of the following could represent the relationship of activation energy to reaction rate?

A.

B.

C.

D.

4. Consider the following:

I	the electrolysis of water	
II	the freezing of water	
Ш	the melting of CuCl ₂	
IV	the combustion of CH ₄	

Which of the above would have a negative ΔH value?

- A. II only
- B. I and III only
- C. II and IV only
- D. I, III and IV

5. Consider the following reaction mechanism:

Step 1:	$H_2O_2 + I^- \rightarrow H_2O + IO^-$
Step 2:	$H_2O_2 + IO^- \rightarrow H_2O + O_2 + I^-$

Which of the following is correct?

	Activated complex	Catalyst
A.	H ₂ O ₂ IO ⁻	I-
B.	H ₂ O ₂ I ⁻	IO-
C,	IO-	I_
D.	IO-	O_2

6. Consider the following equilibrium:

$$PCl_3(g) + Cl_2(g) \iff PCl_5(g)$$

Initially, some PCl₃ and Cl₂ are placed in a flask. Which of the following describes what happens to the reverse reaction rate and to the pressure of the system as equilibrium is established?

	Reverse reaction rate	Pressure
A .	increases	increases
3.	increases	decreases
c.	decreases	decreases
D.	decreases	increases

7. Consider the following system:

$$2NO(g) + O_2(g) \iff 2NO_2(g)$$

Which of the following would indicate whether equilibrium had been established?

- A. $[NO] > [O_2]$
- B. $[NO] = 2[O_2]$
- C. $[O_2] = 2[NO]$
- D. [NO] is constant
- 8. Consider the following:

$$\text{energy} + 6\text{CO}_2(g) + 6\text{H}_2\text{O}(\ell) \ \stackrel{?}{\rightleftarrows} \ \text{C}_6\text{H}_{12}\text{O}_6(s) + 6\text{O}_2(g)$$

Which of the following describes how enthalpy and entropy change in the forward direction?

	Enthalpy	Entropy
Α.,	increases	decreases
В.	increases	increases
C.	decreases	increases
D.	decreases	decreases

9. Considering changes in enthalpy and entropy, which of the following will react completely?

A.
$$2O_3(g) \stackrel{?}{\leftarrow} 3O_2(g)$$

$$\Delta H = -285 \text{ kJ}$$

B.
$$C(s) + 2H_2(g) \stackrel{?}{\longleftrightarrow} CH_4(g)$$

$$\Delta H = -74 \text{ kJ}$$

C.
$$2SO_2(g) + O_2(g) \stackrel{?}{\Leftrightarrow} 2SO_3(g)$$

$$\Delta H = -197 \text{ kJ}$$

D.
$$C_2H_2(g) + Ca(OH)_2(aq) \stackrel{?}{\leftarrow} CaC_2(s) + 2H_2O(\ell) \qquad \Delta H = +183 \text{ kJ}$$

$$\Delta H = +183 \text{ kJ}$$

10. Consider the following system at equilibrium:

$$2\text{HI}(g) + \text{Cl}_2(g) \; \leftrightarrows \; 2\text{HCl}(g) + \text{I}_2(s)$$

Which of the following describes the equilibrium shift and the change in the concentration of $\operatorname{Cl}_2(g)$ when some $\operatorname{I}_2(s)$ is added?

	Equilibrium shift	[Cl ₂]
Α.	no shift	no change
В.	left	increases
C.	left	decreases
D,	right	increases

11. Consider the equilibrium system:

$$N_2(g) + 3Cl_2(g) \rightleftharpoons 2NCl_3(g)$$
 $\Delta H = +460 \text{ kJ}$

Which of the following describes what happens when some NCl_3 is added?

	Equilibrium Shift	Value of K _{eq}	
Α.	right	remains constant	
В.	right	increases	
C.	left	remains constant	
D.	left	decreases	

12. Consider the following equilibrium:

$$2BN(s) + 3Cl_2(g) \iff 2BCl_3(g) + N_2(g) \qquad K_{eq} = 1.6 \times 10^{-3}$$

Which of the following would be the value of K_{eq} for the reaction:

$$BN(s) + \frac{3}{2}Cl_2 \iff BCl_3 + \frac{1}{2}N_2$$

- A. 1.6×10^{-3}
- B. 3.2×10^{-3}
- C. 4.0×10^{-2}
- D. 8.0×10^{-4}
- 13. The following equilibrium system was observed in a 1.0 L flask:

$$Sb_2S_3(s) + 3H_2(g) \iff 2Sb(s) + 3H_2S(g)$$
 $K_{eq} = 0.43$

At equilibrium, there were 0.60 mol Sb_2S_3 , 1.10 mol H_2 and 0.80 mol Sb. What was the equilibrium $[H_2S]$?

- A. 0.57 M
- B. 0.81 M
- C. 0.83 M
- D. 1.5 M

14. Consider the equilibrium:

$$2NO_2Cl(g) \iff 2NO_2(g) + Cl_2(g) \qquad K_{eq} = 0.56$$

If $0.80 \text{ mol } NO_2Cl$, $0.32 \text{ mol } NO_2$ and $0.66 \text{ mol } Cl_2$ are placed in a 1.0 L container, which of the following describes what happens?

- A. The system proceeds left and $[NO_2]$ increases.
- B. The system proceeds left and [NO₂] decreases.
- C. The system proceeds right and [NO₂] increases.
- D. The system proceeds right and [NO₂] decreases.
- 15. Which of the following will form a molecular solution when it is dissolved in water?
 - A. CsCl
 - B. CaC₂O₄
 - C. $Cr(NO_3)_3$
 - D. CH₃CH₂OH
- 16. A 1.0 L sample of saturated solution was prepared at 25°C. The saturated solution was then allowed to evaporate at 25°C until 0.25 L of solution remained. The concentration of the saturated solution after evaporation was
 - A. the same as before evaporation.
 - B. 3 times lower than before evaporation.
 - C. 4 times lower than before evaporation.
 - D. 4 times higher than before evaporation.
- 17. Which of the following salts has a solubility less than 0.1 M?
 - A. FeCl₂
 - B. CaCl₂
 - C. FeSO₄
 - D. CaSO₄

- 18. A solution contains the anions S²⁻ and OH⁻. Which of the following compounds could be added to precipitate only one of these anions?
 - A. $Sr(NO_3)_2$
 - B. $Al(NO_3)_3$
 - C. $Zn(NO_3)_2$
 - D. $Mg(NO_3)_2$
- 19. Consider the equation for a saturated solution of potassium chromate:

$$K_2CrO_4(s) + energy \iff 2K^+(aq) + CrO_4^{2-}(aq)$$

A concentration vs. time graph for a saturated solution of K₂CrO₄ is shown below.

What happened at time t?

- A. KNO₃ was added to the system.
- B. K_2CrO_4 was removed from the system.
- C. The temperature of the system was increased.
- D. The temperature of the system was decreased.

20. Consider the following solubility equilibrium:

$$Sr_3(PO_4)_2(s) \rightleftharpoons 3Sr^{2+}(aq) + 2PO_4^{3-}(aq)$$

The K_{sp} expression is

A.
$$K_{sp} = [Sr^{2+}]^3 [PO_4^{3-}]^2$$

B.
$$K_{sp} = [3Sr^{2+}][2PO_4^{3-}]$$

C.
$$K_{sp} = [3Sr^{2+}]^3 [2PO_4^{3-}]^2$$

D.
$$K_{sp} = \frac{\left[3Sr^{2+}\right]^3 \left[2PO_4^{3-}\right]^2}{\left[Sr_3(PO_4)_2\right]}$$

21. A solution is found to contain a $[Pb^{2+}]$ of 0.10M. What is the maximum $[SO_4^{2-}]$ that can exist in this solution before a precipitate forms?

A.
$$[SO_4^{2-}] = 1.8 \times 10^{-9} M$$

B.
$$[SO_4^{2-}] = 1.8 \times 10^{-8} M$$

C.
$$[SO_4^{2-}] = 1.8 \times 10^{-7} M$$

D.
$$[SO_4^{2-}] = 1.3 \times 10^{-4} M$$

22. Which of the following general properties could be used to describe a basic solution?

I	conducts electricity	
II	reacts with Na ₂ CO ₃ to produce CO ₂	
III	feels slippery	

- A. III only
- B. I and III only
- C. II and III only
- D. I, II and III

23. Which of the following is a conjugate acid base pair?

Acid Conjuga		Conjugate base
A.	NH ₄ ⁺	NH ₃
B.	H ₃ O ⁺	OH-
C.	H ₃ PO ₄	HPO ₄ ²⁻
D.	HPO ₄ ²⁻	H ₂ PO ₄

- 24. Consider the following 1.0 M acid solutions:
 - H₂CO₃
 - HClO₄
 - H₃C₆H₅O₇

Rank the acid solutions in order of decreasing conductivity.

- A. $H_3C_6H_5O_7 > H_2CO_3 > HClO_4$
- B. $HClO_4 > H_2CO_3 > H_3C_6H_5O_7$
- C. $H_2CO_3 > H_3C_6H_5O_7 > HClO_4$
- D. $HClO_4 > H_3C_6H_5O_7 > H_2CO_3$
- 25. Water reacts most completely as a base with which of the following?
 - A. HSO₃
 - B. H_3BO_3
 - C. H₂PO₄
 - D. $Al(H_2O)_6^{3+}$

- 26. Which species in solution will produce the greatest hydroxide ion concentration?
 - A. F
 - B. H₂S
 - C. PO₄³⁻
 - D. HPO_4^{2-}
- 27. A base is added to water and a new equilibrium is established. The new equilibrium can be described by
 - A. $pH < pOH \text{ and } K_w = 1 \times 10^{-14}$
 - B. pH < pOH and $K_w < 1 \times 10^{-14}$
 - C. pH > pOH and $K_w = 1 \times 10^{-14}$
 - D. $pH > pOH \text{ and } K_w > 1 \times 10^{-14}$
- 28. The ionization of water is endothermic. Which of the following could be correct if the temperature of water is decreased?

	K _w	рH	Classification
A.	decreases	7.1	basic
B.	increases	6.8	acidic
C.	decreases	7.1	neutral
D.	stays the same	7.0	neutral

29. Which of the following graphs describes the relationship between $\left[OH^{-}\right]$ and $\left[H^{+}\right]$?

A,

B.

 \mathbf{C}_{\cdot}

D.

- 30. Which of the following 0.10 M solutions of ions would have the highest pH?
 - A. CN
 - B. NH₄⁺
 - C. SO₄²⁻
 - D. $Cr(H_2O)_6^{3+}$

31. Which of the following describes the relationship between base strength and K_b value?

	Base Strength	K _b
Α.	increases	increases
В.	increases	decreases
C.	decreases	increases
D.	decreases	remains constant

- 32. The value of K_b for HPO_4^{2-} is
 - A. 1.6×10^{-7}
 - B. 4.5×10^{-2}
 - C. 6.2×10^{-8}
 - D. 2.2×10^{-13}
- 33. Which of the following 1.0 M solutions would have a pH greater than 7.00?
 - A. HF
 - B. KNO₃
 - C. NH₄Cl
 - D. KCH₃COO
- 34. What is the pH at the transition point for an indicator with a K_a of 2.5×10^{-4} ?
 - A. 1.00
 - B. 3.60
 - C. 7.00
 - D. 10.40

35. Which of the following describes the predominant reaction in a solution of $(NH_4)_2 SO_4$ with respect to hydrolysis?

A.
$$(NH_4)_2 SO_4(aq) \rightleftharpoons 2NH_4^+(aq) + SO_4^{2-}(aq)$$

B.
$$NH_4^+(aq) + H_2O(\ell) \rightleftharpoons H_3O^+(aq) + NH_3(aq)$$

C.
$$SO_4^{2-}(aq) + H_2O(\ell) \rightleftharpoons HSO_4^{-}(aq) + OH^{-}(aq)$$

- D. No hydrolysis reaction occurs.
- 36. What is the pH of the solution formed when 0.085 moles NaOH is added to 1.00 L of 0.075 M HCl?
 - A. 2.00
 - B. 7.00
 - C. 12.00
 - D. 12.78
- 37. Which of the following graphs describes the relationship between the pH of a buffer and the volume of NaOH added to the buffer?

A.

B.

C.

D.

- 38. A gas which is produced by internal combustion engines and contributes to the formation of acid rain is
 - A. H_2
 - B. O_3
 - C. CH₄
 - D. NO₂
- 39. A substance that is oxidized
 - A. loses electrons and is a reducing agent.
 - B. gains electrons and is a reducing agent.
 - C. loses electrons and is an oxidizing agent.
 - D. gains electrons and is an oxidizing agent.
- 40. What is the oxidation number change for C when C₆H₁₂O₆ is converted to C₂H₅OH?
 - A. increase by 2
 - B. increase by 4
 - C. decrease by 2
 - D. decrease by 4
- 41. Consider the following redox equilibrium:

$$X_2 + Y^{2+} \iff 2X^- + Y^{4+} \qquad K_{eq} = 6.2 \times 10^{-8}$$

Which is the strongest oxidizing agent?

- A. X₂
- B. X⁻
- C. Y⁴⁺
- D. Y²⁺

- 42. Which of the following substances will react spontaneously?
 - A. Cu²⁺ and Cl⁻
 - B. Au(s) and Cl⁻
 - C. Au^{3+} and H_2O_2
 - D. Cu^{2+} and H_2O_2
- 43. A titration of a $FeSO_4(aq)$ sample with acidified $K_2Cr_2O_7(aq)$ produced the following results:

Volume of FeSO ₄ sample	10.0 mL
Concentration of K ₂ Cr ₂ O ₇	0.278 M
Volume of acidified K ₂ Cr ₂ O ₇	12.7 mL

The equation for the overall reaction is:

$$6\text{Fe}^{2+} + \text{Cr}_2\text{O}_7^{2-} + 14\text{H}^+ \rightarrow 6\text{Fe}^{3+} + 2\text{Cr}^{3+} + 7\text{H}_2\text{O}$$

What is the $\left[Fe^{2+} \right]$ in the sample?

- A. 0.0212 M
- B. 0.0588 M
- C. 0.353M
- D. 2.12 M

Use the following electrochemical cell diagram to answer questions 44 and 45.

44. The reaction occuring at the cathode is

A.
$$Na^+ + e^- \rightarrow Na$$

B.
$$\operatorname{Sn}^{2+} + 2e^{-} \rightarrow \operatorname{Sn}$$

C.
$$NO_3^- + 4H^+ + 3e^- \rightarrow NO(g) + 2H_2O$$

D.
$$2NO_3^- + 4H^+ + 2e^- \rightarrow N_2O_4(g) + 2H_2O$$

45. The cell potential at equilibrium is

46. Consider the following redox reactions and their corresponding cell potentials:

$$3Ce^{4+} + Au \rightarrow 3Ce^{3+} + Au^{3+}$$
 $E^{\circ} = +0.11 \text{ V}$

$$\text{Co}^{3+} + \text{Ce}^{3+} \rightarrow \text{Co}^{2+} + \text{Ce}^{4+}$$
 $\text{E}^{\circ} = +0.21 \text{ V}$

- What is the reduction potential for $\text{Co}^{3+} + \text{e}^- \rightarrow \text{Co}^{2+}$?
- A. +1.82 V
- B. +1.18 V
- C. +0.32 V
- D. -0.10 V
- 47. During the corrosion of magnesium, the anode reaction is
 - A. $Mg \rightarrow Mg^{2+} + 2e^{-}$
 - B. $Mg^{2+} + 2e^- \rightarrow Mg$
 - C. $4OH^{-} \rightarrow O_2 + 2H_2O + 4e^{-}$
 - D. $O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$
- 48. Why does the zinc coating on the inside of an iron soup can keep the iron from reacting with the soup?
 - A. Zinc is a weaker reducing agent than iron.
 - B. Zinc is a weaker oxidizing agent than iron.
 - C. Zinc is a stronger reducing agent than iron.
 - D. Zinc is a stronger oxidizing agent than iron.

49. The molten salt, ZnCl_2 , undergoes electrolysis. The cathode reaction is

A.
$$Zn \rightarrow Zn^{2+} + 2e^{-}$$

B.
$$Zn^{2+} + 2e^- \rightarrow Zn$$

C.
$$Cl_2 + 2e^- \rightarrow 2Cl^-$$

D.
$$2Cl^- \rightarrow Cl_2 + 2e^-$$

50. A metal spoon is to be electroplated with silver using a DC power supply. Which of the following is correct?

	Spoon	Power supply connection
A.	anode	positive terminal
B.	cathode	positive terminal
C.	anode	negative terminal
D.	cathode	negative terminal

This is the end of the multiple-choice section.

Answer the remaining questions in the Response Booklet.

Chemistry 12 Resource Exam A Answer Key

Cognitive Processes					Weightings		Question Types	
$\mathbf{K} = \text{Knowledge}$					11%		50 = Multiple Choice (MC)	
U = Understanding					78%		8 = Written Response (WR)	
H = Higher Mental Processes					11%			
Topics					Prescribed Learning Outcomes (PLOs)		Weightings	
1. Reaction					A1-8		12%	
-	ic Equilibriun				B1		16%	
	ity Equilibria				C1		16% 33%	
	Bases, and Sal on – Reductic				D1-6, I G1-4,		23%	
					——————————————————————————————————————			
Question Number	Keyed Response	Cognitive Process	Mark	Topic	PLO	Question Type		
1.	D	U	1	1	A2	MC		
2.	D	U	1	1	A2	MC		
3.	A	U	1	1	A4	MC		
4.	C	Н	1	1	A4	MC		
5.	Α	U	1	1	A6	MC		
6.	В	U	1	2	B1	MC		
7.	D	K	1	2	B 1	MC		
8.	A	U	1	2	B 2	MC		
9.	A	U	1	2	B2	MC		
10.	Α	U	1	2	В3	MC		
11.	С	U	1	2	B 5	MC		
12.	C	Н	1	2	B5	MC		
13.	C	U	1	2	В6	MC		
14.	C	U	* 1	2	В6	MC		
15.	D	U	1	3	C 1	MC		
16.	A	Н	1	3	C2	MC		
17.	D	U	1	3	C4	MC		
18.	D	U	1	3	C5	MC		
19.	A	Н	1	3	C5	MC		
20.	A	K	1	3	C6	MC		
21.	C	U	1	3	C7	MC		
22.	В	K	1	4	D1	MC		
		11	•	•				

MC

MC

MC

MC

A

D

D

C

23.

24.

25.

26.

1

1

1

1

4

4

4

4

D3

D4

D5 D5

U

U

U

U

Question	Keyed	Cognitive				Question	
Number	Response	Process	Mark	Topic	PLO	Type	
27.	C	U	1	4	E 1	MC	
28.	C	H	1	4	E 1	MC	
29.	D	U	1	4	E2	MC	
30.	Α	\mathbf{U}	1	4	E3	MC	
31.	Α	K	1	4	E3	MC	
32.	Α	U	1	4	E4	MC	
33.	D	U	1	4	F5	MC	
34.	В	U	1	4	F3	MC	
35.	В	U	1	4	F4	MC	
36.	C	U	1	4	F1	MC	
37.	D	H	1	4	F6	MC	
38.	D	K	1	4	F8	MC	
39.	A	K	1	5	G1	MC	
40.	C	U	1	5	G1	MC	
41.	C	Н	1	5	G2	MC	
42.	C	U	1	5	G2	MC	
43.	D	Ü	1	5	G4	MC	
44.	C	U	1	5	H1	MC	
45.	A	K	1	5	H1	MC	
46.	A	Н	1	5	H1	MC	
47.	A	U	1	5	Н3	MC	
48.	C	Ü	1	5	Н3	MC	
49.	В	Ü	1	5	H4	MC	
50.	D	Ü	1	5	H5	MC	

Question	Keyed	Cognitive				Question	
Number	Response	Process	Mark	Topic	PLO	Туре	
1.	-	U	4	1	A2	WR	
2.	_	U	4	2	В6	WR	
3.	$^{\circ}-^{\circ}$	U	4	3	C3,C4	WR	
4.	1	U	3	4	D6	WR	
5.	200	U	5	4	E4	WR	
6.	-	U	3	4	F1	WR	
7.	2=1	U	4	5	G3	WR	
8.	-	U	3	5	H4	WR	

Chemistry 12Resource Exam A

Response Booklet

Instructions

Answer the following questions in the space provided in this **Response Booklet**. You are expected to communicate your knowledge and understanding of chemical principles in a clear and logical manner. Your steps and assumptions leading to a solution must be written in this **Response Booklet**. Answers must include units where appropriate and be given to the correct number of significant figures. **For questions involving calculations, full marks will NOT be given for providing only an answer.**

PART B: WRITTEN RESPONSE

Value: 37.5% of the examination

Suggested Time: 40 minutes

1. (4 marks)

In a fume hood, a student reacted copper and nitric acid in a flask according to the following equation:

$$\text{Cu(s)} + 4\text{HNO}_3(\text{aq}) \rightarrow \text{Cu(NO}_3)_2(\text{aq}) + 2\text{H}_2\text{O}(\ell) + 2\text{NO}_2(\text{g})$$

The following data was collected:

Time (min)	Mass of flask and contents (g)		
0.0	250.50		
2.5	249.25		
5.0	248.24		
7.5	247.44		

Calculate the overall rate of reaction in grams $\,NO_2\,$ per minute.

How much time will it take to react 0.50 g of Cu at this rate?

2. (4 marks)

Consider the following equilibrium:

$$CH_4(g) + 2H_2S(g) \subseteq CS_2(g) + 4H_2(g)$$

Initially, 0.120 mol CH₄ and 0.280 mol H₂S were placed in a 2.00 L flask. At equilibrium, $[\text{CS}_2] = 0.030 \, \frac{\text{mol}}{\text{L}} \, . \, \text{Calculate K}_{eq} \, .$

3. (4 marks)

Write the net ionic equation for the reaction that occurs when 40.0 mL of 1.50 M AgNO $_3$ is mixed with excess $\rm Na_2SO_4$ solution, and calculate the mass of the precipitate that forms.

4. (3 marks)

Identify an amphiprotic substance and write two balanced equations that demonstrate its amphiprotic nature.

5. **(5 marks)**

A 2.00 M diprotic acid (H_2X) has a pH of 0.60. Calculate its K_a value. Start by writing a general equation for the predominant equilibrium.

6. (3 marks)

A titration was performed by adding 0.125 M NaOH to a 25.00 mL sample of $\rm\,H_2SO_4$. Calculate the $\rm\,[H_2SO_4]$ from the following data.

	Trial #1	Trial #2	Trial #3
Initial volume of NaOH (mL)	4.00	17.05	8.00
Final volume of NaOH (mL)	17.05	28.00	19.05

7. (4 marks)

Balance the following in acidic solution.

$$BiO_3^- + I_3^- \rightarrow Bi^{3+} + IO_3^-$$
 (acidic)

8. **(3 marks)**

Draw an operating electrolytic cell used in the electrolysis of molten sodium chloride, NaCl (ℓ). Label the anode and cathode.

Chemistry 12 Resource Exam A Scoring Guide

1. (4 marks)

In a fume hood, a student reacted copper and nitric acid in a flask according to the following equation:

$$\text{Cu(s)} + 4\text{HNO}_3(\text{aq}) \rightarrow \text{Cu(NO}_3)_2(\text{aq}) + 2\text{H}_2\text{O}(\ell) + 2\text{NO}_2(\text{g})$$

The following data was collected:

Time (min)	Mass of flask and contents (g)
0.0	250.50
2.5	249.25
5.0	248.24
7.5	247.44

Calculate the overall rate of reaction in grams NO_2 per minute.

(1 mark)

How much time will it take to react 0.50 g of Cu at this rate?

(3 marks)

Solution:

For Example:

Calculate the overall rate of reaction in grams $\,NO_2\,$ per minute.

rate =
$$\frac{(250.50 \text{ g} - 247.44 \text{ g})}{7.5 \text{ min}} = 0.41 \text{ g/min}$$

How much time will it take to react 0.50 g of Cu at this rate?

time(min) = 0.50 g Cu ×
$$\frac{1 \text{ mol Cu}}{63.5 \text{ g Cu}}$$
 × $\frac{2 \text{ mol NO}_2}{1 \text{ mol Cu}}$ × $\frac{46.0 \text{ g NO}_2}{1 \text{ mol NO}_2}$ × $\frac{1 \text{ min}}{0.41 \text{ g NO}_2}$

$$= 1.8 \min$$

 \leftarrow 3 marks

 $\leftarrow 1 \text{ mark}$

2. (4 marks)

Consider the following equilibrium:

$$CH_4(g) + 2H_2S(g) \subseteq CS_2(g) + 4H_2(g)$$

Initially, 0.120 mol CH₄ and 0.280 mol H₂S were placed in a 2.00 L flask. At equilibrium, $[\text{CS}_2] = 0.030 \, \frac{\text{mol}}{\text{L}} \, . \, \text{Calculate K}_{eq} \, .$

Solution:

For Example:

$$K_{eq} = \frac{[CS_2][H_2]^4}{[CH_4][H_2S]^2}$$

$$= \frac{(0.030)(0.120)^4}{(0.030)(0.080)^2}$$

$$= 0.032$$

$$\leftarrow 1 \text{ mark}$$

3. (4 marks)

Write the net ionic equation for the reaction that occurs when 40.0 mL of 1.50 M $AgNO_3$ is mixed with excess Na_2SO_4 solution, and calculate the mass of the precipitate that forms.

Solution:

For Example:

$$2 \text{Ag}^{+}(\text{aq}) + \text{SO}_{4}^{2-}(\text{aq}) \rightarrow \text{Ag}_{2} \text{SO}_{4}(\text{s}) \qquad \qquad \leftarrow 1 \text{ mark}$$
 moles of $\text{Ag}^{+}: 1.50 \frac{\text{mol}}{\text{L}} \times 0.0400 \text{ L} \times \frac{1 \text{ mol Ag}^{+}}{1 \text{ mol AgNO}_{3}} = 0.0600 \text{ mol} \qquad \leftarrow 1 \text{ mark}$
$$\text{Moles of } \text{Ag}_{2} \text{SO}_{4}: 0.0600 \text{ mol} \times \frac{1 \text{ mol Ag}_{2} \text{SO}_{4}}{2 \text{ mol Ag}^{+}} = 0.0300 \text{ mol Ag}_{2} \text{SO}_{4} \qquad \leftarrow 1 \text{ mark}$$

$$\text{Mass of } \text{Ag}_{2} \text{SO}_{4}: 0.0300 \text{ mol} \times 311.9 \frac{\text{g}}{\text{mol}} = 9.36 \text{ g} \qquad \leftarrow 1 \text{ mark}$$

4. (3 marks)

Identify an amphiprotic substance and write two balanced equations that demonstrate its amphiprotic nature.

Solution:

For Example:

Amphiprotic substance: H_2O \leftarrow 1 mark

 H_2O behaving like an acid: $H_2O+F^- \iff OH^-+HF \iff 1$ mark

 H_2O behaving like a base: $H_2O + HF \iff H_3O^+ + F^- \iff 1$ mark

5. (5 marks)

A 2.00 M diprotic acid (H_2X) has a pH of 0.60. Calculate its K_a value. Start by writing a general equation for the predominant equilibrium.

Solution:

For Example:

$$K_{a} = \frac{[H_{3}O^{+}][HX^{-}]}{[H_{2}X]}$$

$$= \frac{(0.25)(0.25)}{1.75} \qquad \leftarrow 1 \text{ mark}$$

$$= 0.036 \qquad \leftarrow 1 \text{ mark}$$

6. (3 marks)

A titration was performed by adding 0.125 M NaOH to a 25.00 mL sample of $\rm\,H_2SO_4$. Calculate the $\rm\,[H_2SO_4]$ from the following data.

	Trial #1	Trial #2	Trial #3
Initial volume of NaOH (mL)	4.00	17.05	8.00
Final volume of NaOH (mL)	17.05	28.00	19.05

Solution:

For Example:

	Trial #1	Trial #2	Trial #3
NaOH added (mL)	13.05	10.95	11.05

¹ discard

average NaOH added = 11.00 mL = 0.01100 L

$$\left(\mathrm{H_2SO_4} + 2\mathrm{NaOH} \rightarrow \mathrm{Na_2SO_4} + 2\mathrm{HOH}(\ell)\right)$$

$$[H_2SO_4] = \frac{0.125 \text{ mol NaOH}}{L} \times 0.01100L \times \frac{1 \text{ mol } H_2SO_4}{2 \text{ mol NaOH}} \times \frac{1}{0.02500 \text{ L}}$$

$$= 0.0275 \text{ M} \qquad \qquad \text{$ \stackrel{\uparrow}{\square} 1 \text{ mark} } \qquad \text{$ \stackrel{\uparrow}{\square} 1 \text{ mark} }$$

7. (4 marks)

Balance the following in acidic solution.

$$BiO_3^- + I_3^- \rightarrow Bi^{3+} + IO_3^-$$
 (acidic)

Solution:

For Example:

8. (3 marks)

Draw an operating electrolytic cell used in the electrolysis of molten sodium chloride, $NaCl(\ell)$. Label the anode and cathode.

Solution:

For Example:

