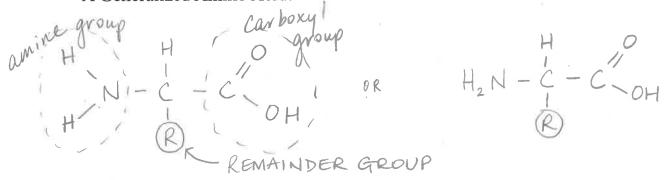
Proteins

-- proteins comprise many STRUCTURAL and FUNCTIONAL components of living things:

A. <u>STRUCTURAL PROTEINS</u>:

- i. Keratin prominent in hair and finger/toenails
- ii. <u>Collagen</u> -- found in connective tissue (eg. ligaments, tendons, cartilage, bone) and skin
- iii. Actin and Myosin -- structural components of muscle tissue
- iv. Tubulin main component of cellular cytoskeleton


B. FUNCTIONAL PROTEINS:

- i. Enzymes -- regulate biochemical reactions in the body.
- ii. <u>Hormones</u> chemical messengers (travel in blood) that influence metabolism in many ways (eg. insulin, Growth Hormone etc.)
- iii. Antibodies -- provide an immune response in our blood by recognizing (and indirectly destroying) anything foreign and harmful
- iv. Neurotransmitters -- allow nerve cells to communicate with other nerve cells, muscle cells, or glands (eg. norepinephrine, acetylcholine, dopamine)
- v. Hemoglobin -- transports oxygen, carbon dioxide, and acts as a blood buffer by transporting hydrogen ions.
- vi. Fibrin -- a protein that aids in the clotting of blood.

Protein Structure

- -- composed of monomers called AMINO ACIDS.
- -- there are 20 amino acids in nature.
- -- each of these 20 amino acids contain an identical *conserved* structure and differing Remainder Groups (R-Groups).

A Generalized Amino Acid:

Linking Amino Acid Monomers

- -- amino acids are joined by dehydration synthesis to form a polypeptide chain or a protein molecule (this occurs during the process of Protein Synthesis, hosted by a ribosome(s)).
- -- a covalent bond called a PEPTIDE BOND forms between the amino group of one amino acid and the carboxyl group of another, again through the process of dehydration synthesis.

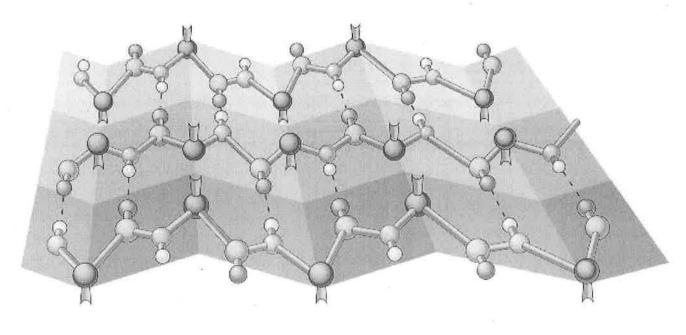
H

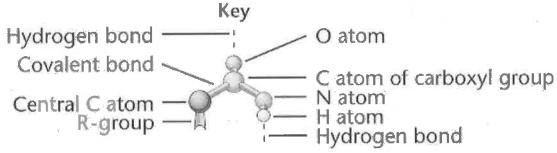
$$N-C-C$$
 $N-C-C-C$
 $N-C-C$
 $N-C-C-C$
 $N-C-C$
 $N-C-C$
 $N-C-C$
 $N-C-C$
 $N-C-C$
 $N-C-C$
 $N-C$
 $N-C$

- -- a chain of <u>2-75</u> amino acids is a referred to as a peptide chain or a POLYPEPTIDE.
- -- a chain of >75 amino acids is considered to be a PROTEIN.

Note: amino acids' conserved structures possess slightly polar tendencies, meaning that amino acids can form hydrogen bonds between themselves (Note: R-Groups can be polar or non-polar).

Protein Structure -- Levels of Organization

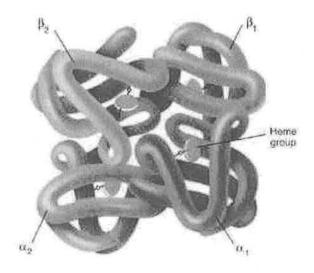

-- proteins commonly have three levels of organization, and some have a fourth level:


I. Level One -- PRIMARY STRUCTURE:

- -- refers to the simple linear sequence of amino acids held together by peptide bonds.
 - -- every protein has a unique sequence of amino acids.

II. Level Two -- SECONDARY STRUCTURE:

- -- refers to the polypeptide/protein chain adopting an *alpha-helix* (right-handed coil) shape (the majority of proteins adopt this structure, relative to the other type of secondary structure described below) (see fig. 2.27 p. 39).
- -- hydrogen bonds between every fourth amino acid (H to O, or H to N) initiate the formation of the helix and stabilize it once it's formed.
- -- amino acids might also form less common *beta-pleated sheets* where amino acids are connected laterally with hydrogen bonds.
- -- these beta sheets are more evident in structural-style proteins (globular proteins) or in fibrous proteins (fibrin (blood clotting)).
 - -- see diagram next page.



III. Level Three -- TERTIARY STRUCTURE:

- -- refers to the 'twisting and turning' of the alpha-helix into a structure that looks less 'strand-like' but more 'knot-like'.
- -- promoted by attractions (Ionic, Covalent, H-bonds) and repulsions between the various R-groups involved in the protein.
 - -- each protein-type possesses its own, unique tertiary structure.

IV. Level Four -- QUATERNARY STRUCTURE:

- -- not all proteins possess a quaternary structure.
- -- occurs when separate, tertiary-structured proteins join together to form a more 'complex' protein.
 - -- eg. Hemoglobin (see diagram on next page)

* the final shape of a protein is essential in determining how the protein functions (see p.30) *discussed heavily in the Enzyme Unit.

Protein Denaturation (read intro on p.38)

- -- a protein is said to be *denatured* when its tertiary shape is altered, due to the normal bonding between R-groups being inhibited/disturbed.
- -- this destroys the functionality of the protein
- -- may be caused by:
 - -- large temperature increase (eg. egg whites)
 - -- exposure to heavy metals (eg. Pb, Hg, U, etc...)
 - -- changes in pH